VASITE 2025 Annual Meeting

VDOT Signal Operations Initiatives

June 17, 2025

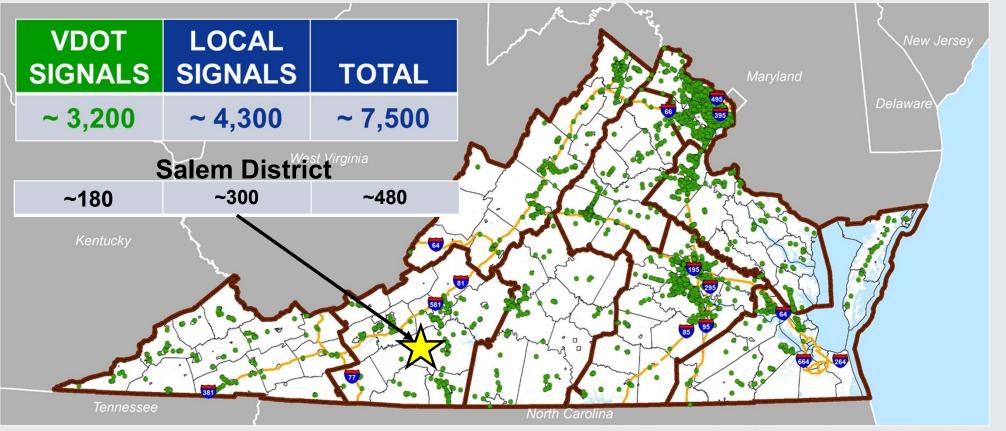
Andrew Nichols, PhD, PE, PTOE

Signal & Freeway Operations Engineer Salem District

Justin Effinger, PE, PTOE Practice Leader - TSMO: Arterial Management

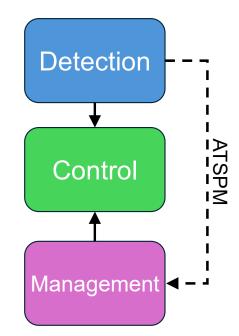
Agenda

Traffic Signal Initiatives


- Detection
- Control
- Management

- **SPM Projects & Benefits**
 - VDOT
 - Minnesota DOT
 - Anne Arundel Co, MD

Salem District Traffic Signals



Note: Map contains only VDOT owned and maintained signals.

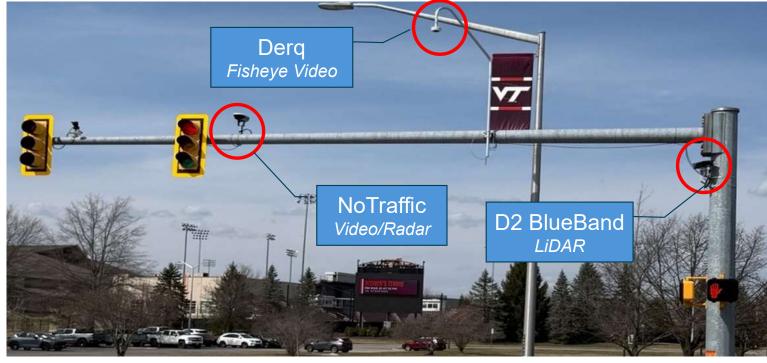
Traffic Signal Operations Components

- Detection (optional)
 - Vehicles, peds, and bikes; Emergency vehicles and transit
 - ON/OFF signal to the controller by phase
- Control
 - Logic that changes signal indications
 - Timing thresholds that limit green time
 - Parameters to provide progression along arterials
- Management
 - Monitoring performance and addressing problems
 - Engineering analysis to determine signal timings
 - Prioritization of retiming efforts
- Maintenance

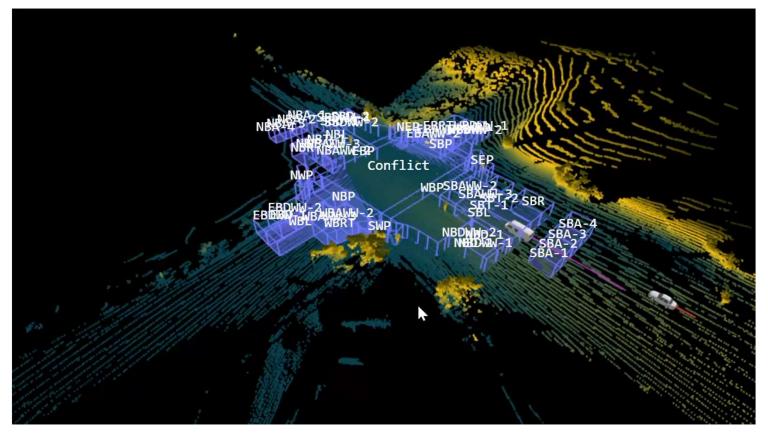
Mead & lunt

Detection Initiatives

- <u>Single</u> detection technology that serves multiple purposes
 - Reliable lane-by-lane presence detection (stop bar and advanced)
 - Continuous vehicle and ped counts
 - Trajectories of all approaching/departing vehicles
 - Reliable pedestrian presence detection
 - Video archive of notable safety and operation events
 - Remotely accessible from VDOT network
 - No/minimal traffic control for installation/maintenance
- Reliable probe data to see an entire corridor in real-time
 - Continuous queue length and delay data
 - Corridor-level trajectories



Detection Evaluations


 2 intersections in Salem District with multiple detection systems to evaluate presence detection and other functionality (ITTF funded by VTTI)

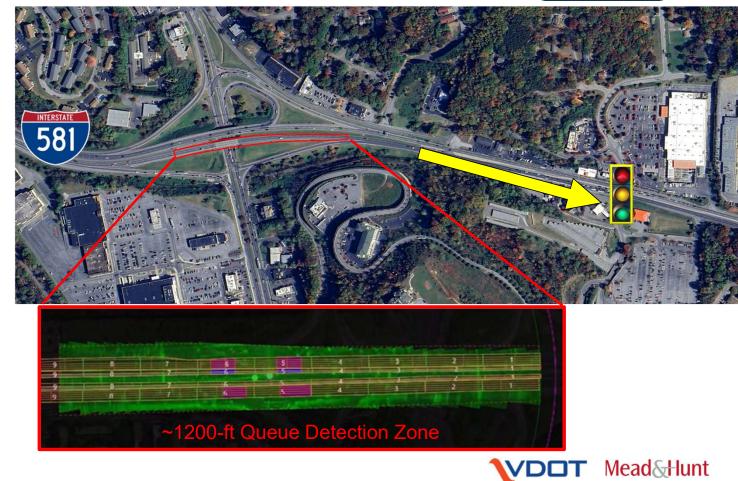
LiDAR Detection

Detection

Control

Control Initiatives

- Mechanisms that allow the intersection/corridor to <u>automatically</u> react to observed traffic conditions
- 1. Trajectory-based control (free optimization)
 - Prioritize platoons of vehicles on the mainline without a coordination plan
 - VDOT joined Pooled Fund Study and has identified a test corridor
- 2. Traffic Responsive (KITS Congestion Manager)
 - Selects predefined signal timing plans based on detector-based thresholds
 - Upcoming ITTF project for Rte 220 corridor in Roanoke
- 3. Adaptive (KITS Kadence)
 - Continuously adjusts cycle/offset/split parameters based on detection observations
 - Upcoming ITTF project for 17 intersections on Rte 460B in Christiansburg



Traffic Responsive: Rte 220 Corridor in Roanoke

Control

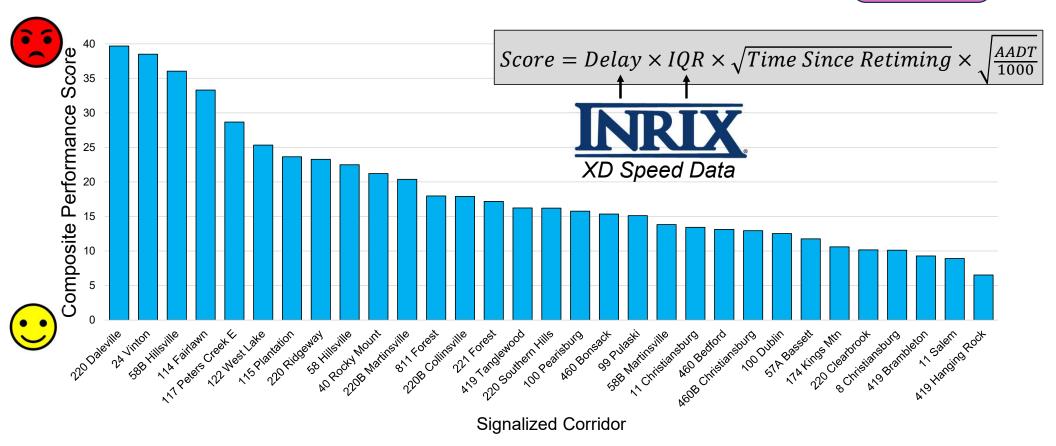
- Trigger "flush" timing plan when queue reaches interchange
- NavTech radar detection

Adaptive: 460B Corridor in Christiansburg

- Detection: lane-by-lane stopbar and advanced
- KITS Kadence Adaptive control
- Adjusts cycle, offset, and splits based on traffic
- Evaluate adaptive performance with ATSPM and probe data

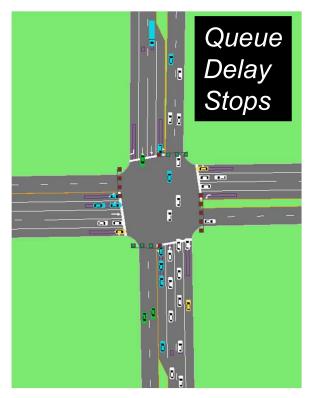
VDOT

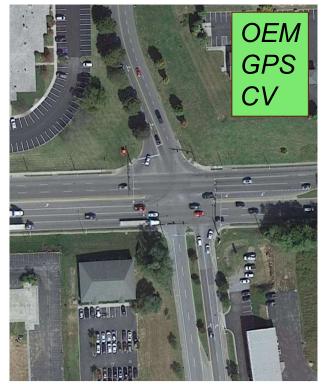
Control


Management Initiatives

- Notification of potential problems and remotely observe/troubleshoot
 - Flash conditions
 - Detector malfunction
 - Split/cycle failures and abnormally long queue lengths
- Streamline signal timing development and updates
 - Eliminate traffic data collection and reliance on Synchro "snapshot" optimization
 - Continuously update traffic signal timings based on ATSPM and probe data
 - Continuously and uniformly measure signal performance
 - Signal timing modifications during incidents
 - Prioritize intersections based on public experience
 - Quantify the impact of improvements

2024 Salem District Corridor Ranking


Management


Probe-based Signal Performance Measures (SPM)

• SimTraffic = 100% Probes

=?

Real World = 5-20% Probes

SPM Projects & Benefits

- Virginia DOT
 - <u>Current</u>: Use of KITS historical data and Flow Labs probe-based data to evaluate intersection performance
 - <u>Upcoming</u>: Use of KITS and Flow Labs data to retime corridors
- Minnesota DOT
 - <u>Completed</u>: Use of Flow Labs data to evaluate and retiming 16 intersections in South Metro area (Minneapolis, MN)
- Anne Arundel County, MD
 - <u>Completed</u>: Use of High-Resolution Data (Miovision) to evaluate and retime two corridors in Annapolis, MD

TRANSPORTATION

Mead&Hunt

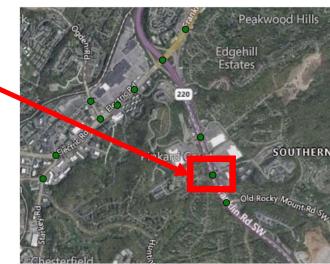
Integrating KITS and Probe-Based SPMs

- Analysis focused on 5 intersections along Rte 220 south of Roanoke
- Investigate data from KITS and Flow Labs that could be used to improve traffic signal operations
- Group the data in a more beneficial format that combines the data sources and enhances what the open-sourced ATSPM software can do
- Identify challenges, gaps and lessons learned that will help in the data architecture/dashboard task

VDDT Mead&Hunt

Integrating KITS and Probe-Based SPMs

KITS Data

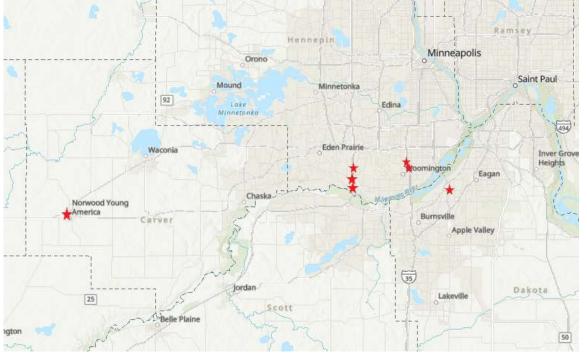

Α В FLOW LABS Force Off (FO) / Gap Out (GO) Skip (SK) Plan 7 Peak Hour Average Turning Movement Counts (7:15 AM - 8:15 AM Weekdays) S erminatior Ð P1 P2 P3 P4 P5 P6 P7 **P8** SBRT SBTH SBI 4 FO 341 33 757 46 1463 588 1438 0 387 1221 0 Ε 5 GO 296 709 336 0 0 EBL 68 31 WBRT 0 0 0 6 SK WBTH 858 32 198 772 274 57 1495 1495 EBTH 10 7 7 Total 1495 1495 1495 1495 1495 1495 1495 1495 EBRT 14 9 WBI 0 Similar to 8 FO % 39% 26% 25 1405 29 Good for >0% 0% NBTH NBRT 9 GO % 20% 0% 47% 22% 0% 0% NBL ATSPMs but 10 SK % 57% 2% 13% 52% 18% 4% 100% 100% Synchro Split Times 12 over a long S 13 Plan 7 Average Queue Length, Feet (6:00 AM - 9:00 AM Weekdays) bilt P1 P2 P3 P4 P5 P6 P7 **P8** analysis & S 14 Low SBRT SBTH 0 51 0 0 0 47 0 0 SBI Ð duration 15 25th 91 0 200.7 190 201.9 0 15 0 13 86 0 ⊐ Calibration ഗ 16 50th 106 17 20 94 0 EBL 83.9 49.3 WBRT 0 0 0 ወ 7.3 107.6 WBTH 17 Avg 106.6 16.7 7.8 15.5 98.4 0.0 0.0 EBTH 82.6 ğ O 18 75th 16 119 19 16 20 106 0 0 EBRT 95.9 61.6 WBL > 19 85th 16 124 23 17 20 116 0 383.6 312.9 350.4 0 52 0 20 High 206 48 32 42 189 0 NBI NBTH NBRT 22 Split Times (Programmed) 23 P1 P2 P3 P4 P5 P6 P7 Plan 7 Average Approach Speed, MPH (6:00 AM - 9:00 AM Weekdays) **P8** 24 Prog. 16 90 17 17 20 86 SBRT SBTH SBL 0 S 25 27.1 49.8 17.2 eed 26 Split Times (%) EBL 17.8 17.8 WBRT Lesson Learned 27 EBTH 8.7 WBTH P1 P2 P3 P4 P5 P6 **P7 P8** 9.1 28 Low 55% #DIV/0! #DIV/0! WBL 0% 57% 0% 0% EBRT 10.4 9.7 0% Q Needed to be 29 25th 0% 101% 88% 65% 100% #DIV/0! #DIV/0! 18.2 43.8 26.7 0% ഗ 30 50th 0% 118% 0% 100% 109% #DIV/0! #DIV/0! NBTH NBRT 100% NBL 46% 46% 114% #DIV/0! #DIV/0! 31 Avg 118% 98% 78% converted from 32 75th 100% 132% 112% 94% 100% 123% #DIV/0! #DIV/0! 135% #DIV/0! #DIV/0! 33 85th 100% 138% 135% 100% 100% 220% #DIV/0! #DIV/0! movement to 325% 229% 282% 188% 210% 34 High FLOW LABS phase Split Failures (%) P1 P2 P3 P4 P5 P6 P7 P8 3.0% 2.4% 16.0% 3.1% 2.6% 2.4%

Flow Labs

Actionable Outcomes – Rte 220 Corridor

- Weekend has total volumes comparable to the weekday PM Peak
- Phase 3 is more prone to split failures, especially during Plan 8 & Plan 11
 - Switch side-street split phasing order?
 - Utilize PCD to determine if any mainline time is unused by platoons and could be given to the side streets
- EVP significantly impacts corridor operations
 - Multiple EVP instances over a short duration
 - Modify EVP parameters
- Look into the post-COVID-19 travel patterns
 - Investigate whether number of timing plans should be changed
- (Implementing upstream queue detection and Traffic Responsive)

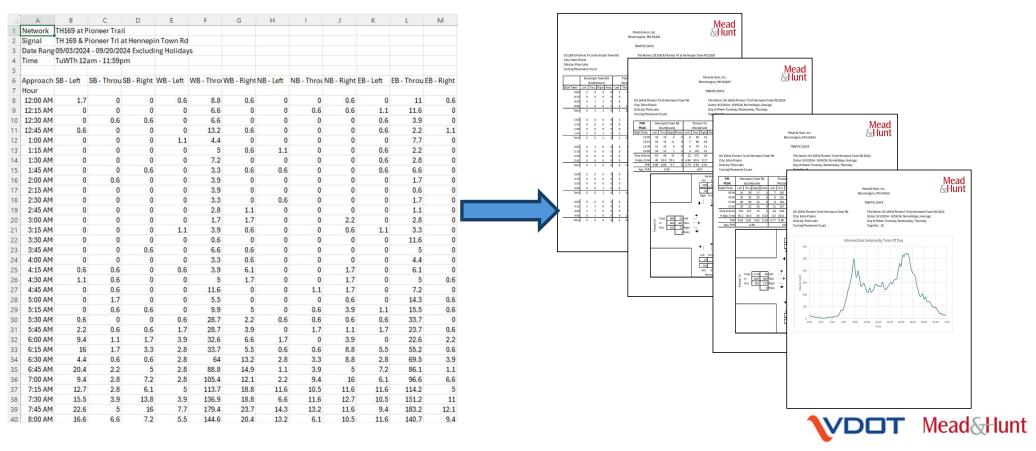
VDDT Mead&Hunt



Mead & Hunt

South Metro Signal Optimization Project

- 16 Signalized Intersections
- Turning Movement Counts – Flow Labs Probe-Based Data
- Analysis of Existing Intersections
- Optimization of Signal Timing
 - FYA Phasing Analysis
 - Cycles, Splits, Offsets, Sequence
 - Traffic Responsive
- Timing Plan Implementation
 - Kinetics Central Signal System
- Project Benefits Report


Note: This was a full signal optimization project, however, this presentation focuses only on some of the big data integration.

Flow Labs Turning Movement Count Data

• Utilized multiple months of continuous TMC data (instead of 1-2 days)

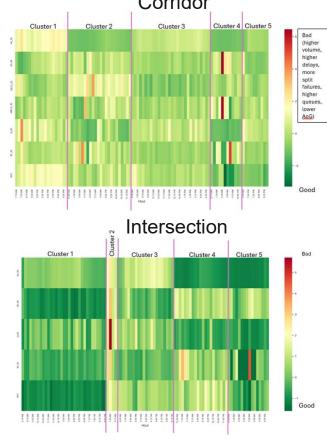
Flow Labs Turning Movement Count Data

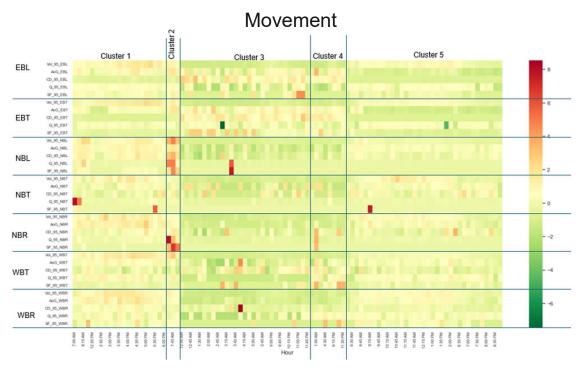
• Where can we get pedestrian data without observations?

ACTIVITY LOC

DEDODTO

DOCUMENTS


DEVICE EVENTS				± =
SPLIT MONITOR	Timestamp (CDT) \downarrow	Event Code	Event Name	Parameter
PLIT DATA				
VERAGE SPLIT DATA	03/14/2025 09:15:56 CDT	3	Phase Min Complete	6
HASE TERMINATION	03/14/2025 09:15:48 CDT	22	Pedestrian Begin Clearance	2
URDUE SPLIT FAILURE			Karangooda (Karano) an a 🧰 n'n o gana an ang karango an	
URDUE COORDINATION DIAGRAM	03/14/2025 09:15:41 CDT	46	Phase Omit On	8
URNING MOVEMENT	03/14/2025 09:15:41 CDT	0	Phase On	2
PROACH VOLUME				
PROACH DELAY	03/14/2025 09:15:41 CDT	0	Phase On	6
RRIVALS ON RED	03/14/2025 09:15:41 CDT	1	Phase Begin Green	2
ELLOW AND RED VIOLATIONS				
OW PROFILE	03/14/2025 09:15:41 CDT	1	Phase Begin Green	6
VENT TIMELINE	03/14/2025 09:15:41 CDT	2	Phase Check	8
	03/14/2025 09:15:41 CDT	11	Phase End Red Clearance	8
	03/14/2025 09:15:41 CDT	12	Phase Inactive	8
	03/14/2025 09:15:41 CDT	21	Pedestrian Begin Walk	2
	03/14/2025 09:15:41 CDT	31	Barrier Termination	2
	03/14/2025 09:15:41 CDT	61	Overlap Begin Green	7
	03/14/2025 09:15:41 CD1	01	overlap Begin Green	7
				13 of 1

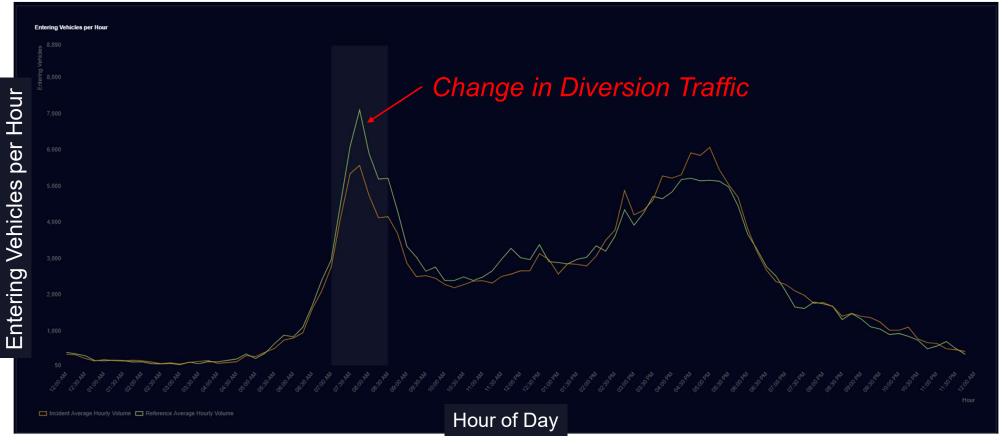


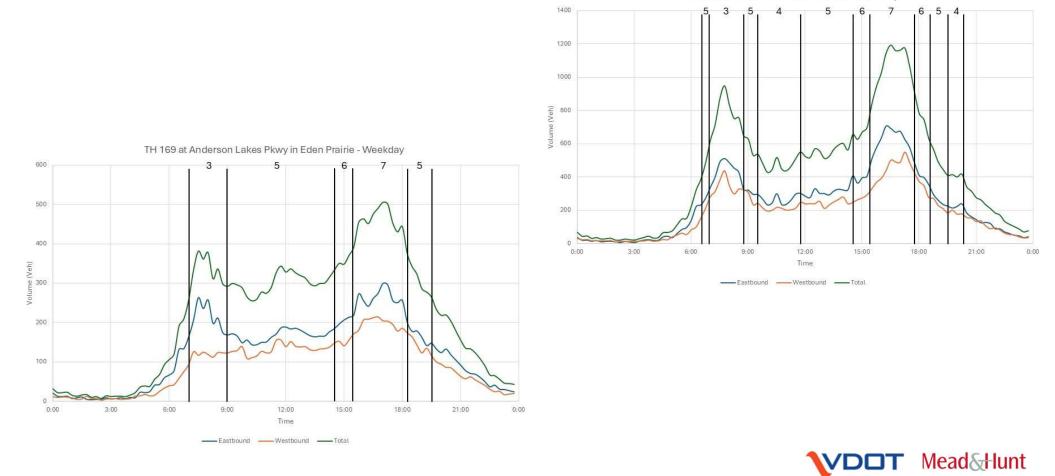
Big Data Analysis of Probe Data

Cluster Analysis performed to identify actionable insights
 Corridor

Flow Labs – Week-over-Week Trend Analysis

Map View Cerberus Signal Operations	Cerbenu												E	Current Trends Wow MeM Cr
Featworks Signals Phases		Network	by natiwark, into	ersection or phase										F Filter 🔲 Export
		ALERT ~	HEALTH ~	region ~	NETWORK ~	TIME OF DAY	/8 TRAVEL TIME	SB/WB BUFFER INDEX ~	SB/WB PLANNING TIME INDEX ~	MEAN LOS ~	CONTROL DELAY	CONTROL DELAY	CONTROL DELAY	HIGH DELAY PERCENTAGE HOL % to e vehicles % DEL
		12	ÿ	TH169 at Riverv	THOSE at Riversi	Weekday PM Peak: 02:30PM-05:3	орм	18.45	12.7%	6	6.0%	0.0%	34,0%	96.W 20.5
														712% 172
						Weekend Daytime: DE-00AM-08-0 Weekeday AM Peak: 06:30AM-08:3								17.2% 3.41 -0.7% 2.1%
														8.0% π.2
														17.0% 7.7%
														0.7% 4.65
														0.6% 0.61
														-23%, 7.0% -5.8% 8.5%
	WB PLANNING	a .		MEAI	LOS		CONTROL	DELAY		CONT	TROL DE	LAY	_	7.8% 10.9 -11% 5.3% ♥
12.1	96.			*		4	5.9%			0.0%	8			
														VDOI


Flow Labs – Volume Trend Analysis



Flow Labs – Volume Trend Analysis

Time-of-Day (TOD) Plan Analysis

South Metro Project Benefits

Total User Benefit \$1.89 million per year

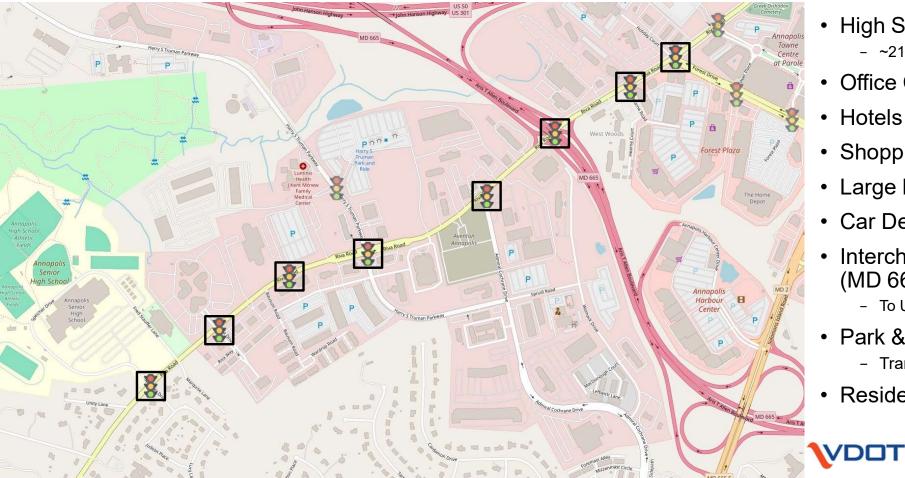
Benefit to Cost Ratio 29:1

BENEFITS

Travel Time Savings ~54,500 hours (reduced delay)

Reduced Vehicle Stops
~3.4 million fewer stops

Fuel Savings ~65,000 gallons of fuel saved



Emission Reductions Decrease in CO, NO_X, VOC (~4 Tons CO₂, ~1 Ton VOC)

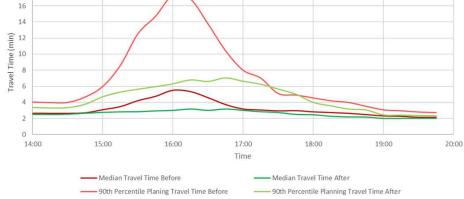
Riva Road Corridor Retiming Project

- High School - ~2160 Students
- Office Complexes
- Hotels
- Shopping Centers
- Large Retail Stores
- Car Dealership
- Interchange (MD 665)
 - To US 50/I-97
- Park & Ride Lot - Transit & Greyhound

Mead & Hunt

Residential

ATSPM Projects & Benefits


User cost: \$324,000 (17,200 hours of delay)

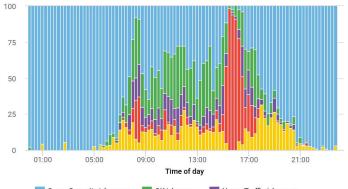
(15,000 gallons of fuel)

Percentage of Cycles (15 minutes)

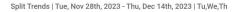
CO2 cost: \$7,000 (145 tons of CO2)

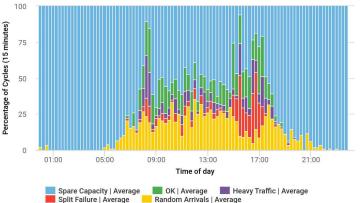
Benefit to Cost* Ratio: 14:1

EB Riva Road


Split Failures

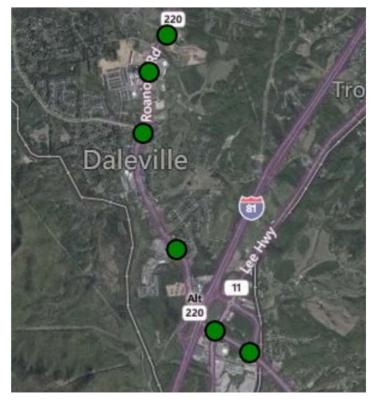
Riva Road @ Harry S Truman Parkway, Riva Road (EB) - Thru


18


Split Trends | Mon, Aug 28th, 2023 - Fri, Sep 15th, 2023 | Tu,We,Th

Spare Capacity | Average 📕 OK | Average Heavy Traffic | Average Split Failure | Average Random Arrivals | Average

Riva Road @ Harry S Truman Parkway, Riva Road (EB) - Thru



Upcoming VDOT Retiming Projects

Probe-Based Signal Performance Measures Rte 220 Daleville, VA

Traditional ATSPMs Rte 250 Charlottesville, VA

Probe-Based SPM Evaluation

- DDOT funding Probe-Based SPM Study that will evaluate INRIX Signal Analytics, Flow Labs, and Iteris Signal Trends
 - Data collection
 - Penetration rate study
 - Turning movement count accuracy
 - Integration into existing DDOT processes
 - Network optimization
 - Signal system operational support
- VDOT funding extension of that project for Virginia needs

Summary

- There are plenty of opportunities to improve VDOT signal operations as the industry continues to advance with emerging technologies
- ATSPM will be operational soon and VDOT will begin integration of this tool into operations and maintenance workflows
- Share your agency's efforts on advancing detection, control, and management

Thank You!

Justin Effinger, PE, PTOE Justin.Effinger@meadhunt.com

Andrew Nichols, PhD, PE, PTOE Andrew.Nichols@VDOT.Virginia.gov