

Challenging today. Reinventing tomorrow.

Al-based Dynamic Arterial Signal Management – A Case Study

Zelan Jia, PE Joyce Zhou, PE, PTOE Shankar Natarajan, PE, PTOE

VASITE June 2023

- 1. Introduction
- 2. Methodology
- 3. Traffic Volume & Occupancy Prediction
- 4. Signal Controller & API Development
- 5. Analysis Results
- 6. Conclusion

Introduction

Study Scope

- Improve traffic operations on a beachbound arterial corridor
- Existing system is already actuated-coordinated with dynamic pattern changes based on real-time traffic conditions
- Traffic surges very fast during summer, reactive system cannot keep up
- Need for a proactive/ predictive system to manage pattern changes in real-time

Study Scope

- High volume on weekends than weekdays
- Overall high volume daily on Friday (summertime)
- High southbound volume to beach area

Methodology

Methodology

- Test alternative pattern change systems
 - Scheduled Baseline
 - Responsive (Dynamic) Current
 - Predictive Planned
- Use Machine Learning (Deep Learning) algorithms for volume & occupancy prediction
 - Use predicted volume & occupancy to trigger responsive signal group signal cycle and offset change
- Model and evaluate system in microsimulation model
 - Collect data every 5-min simulation time interval.
- Compare with field data

Signal Control Operations

- Signal patterns
 - Pre-coded and stored signal patterns
 - Common basic settings
 - Signal patterns vary by cycle length, phase split and offset
- Scheduled signal operation
 - Signal pattern changes based on time of day and day of week
 - Timetable based on historical traffic data
 - Serves recurring peak and off-peak traffic flows
 - Regions with typical and steady traffic patterns
- Dynamic/Responsive signal operation
 - Signal pattern change based on real-time traffic conditions
 - Serves non-recurring and fluctuating traffic pattern
 - Dynamic change rules and criteria
 - Respond to measured current conditions
- Respond to predicted future conditions

Proposed TOD Plan					
Hour	Min	Plan	Cycle		
		Everyday			
0	5	1/1/1	90 BAL		
6	30	1/2/1	120 BAL		
	We	ekdays (Day	s 2 - 6)		
7	30	2/1/1	150 SB		
9	0	2/2/1	150 BAL		
15	0	2/3/1	150 NB		
20	0	1/2/1	120 BAL		
_					
		Sunday (Day	(1)		
9	30	2/2/1	150 BAL		
13	30	3/3/1	165 NB		
18	0	2/3/1	150 NB		
22	30	1/2/1	120 BAL		
		Saturday (Da	y 7)		
7	30	2/2/1	150 BAL		
11	0	3/1/1	165 SB		
18	0	2/2/1	150 BAL		

Siemens/Yunex Tactics - Dynamic Signal Operations

- Signal patterns change by responding to the traffic conditions measured by detector occupancy rate (o) and volumes (v)
- (V+O)% per direction per interval
 - Calculation based on per lane volumes and occupancy rate
 - Occupancy rate: percentage of time a vehicle is sensed over the detector
- value per interval
 - Measure directional traffic flows
 - Identify congestion direction
 - Determine splits and offsets
- Trigger intersections
 - Seven intersections along the corridor
 - Detectors on downstream lanes

$$(V + O)\% = \frac{1}{n} \times (\sum_{d_1 \in D} \frac{5 - \min volume_{d_1}}{150} \times 100 + \sum_{d_1 \in D} 5 - \min occupancy_{d_1})\%$$

where, d₁ = perlane system detector i

$$v\% = \frac{d_1, d_2, d_3, ..., d_n}{\frac{1}{m} \times \sum_{d_j \in DS} (IB \ volume)_{d_j}}$$

$$v\% = \frac{\frac{1}{m} \times \sum_{d_j \in DS} (IB \ volume)_{d_j}}{(\frac{1}{m} \times \sum_{d_j \in DS} (IB \ volume)_{d_j} + \frac{1}{n} \times \sum_{d_j \in DN} (NB \ volume)_{d_j})}$$

where, $d_1 = perione$ system detector l

$$\begin{split} \mathbf{DS} &= \{d_1, d_2, d_3, ..., d_m\} \\ \mathbf{DN} &= \{d_1, d_3, d_3, ..., d_n\} \end{split}$$

Cycle Length and Split/Offset

Cycle Length – (V+O)%

- To change to longer cycle length
 - V+O is increasing
 - Either directional V+O greater than entry line
- To change to shorter cycle length
 - V+O is decreasing
 - Both directional V+O less than exit line

Offset – v value

- Three levels of directionality
 - Default level = 1: balanced volumes at both directions
 - Level = 0: favor Northbound traffic
 - Level = 2: favor Southbound traffic

Example of Dynamic Signal Operation

Traffic Volume & Occupancy Prediction

Traffic Data Prediction

- Traffic prediction
 - Forecasting the volume and density of traffic flow
- Traffic prediction algorithms
 - Statistical
 - Fast and cheaper but less accurate
 - Auto-Regressive Integrated Moving Average (ARIMA) model
 - Machine learning
 - Large masses of heterogeneous data
 - Random forest; k-nearest neighbors (KNN)
 - Deep Learning
 - Highly effective
 - Convolutional neural networks (CNNs); Recurrent neural networks (RNNs) – time series data

Deep Learning Model

- Neural network models
 - RNN (Recurrent Neural Networks)
 - Time-sequence data and prediction
 - With "memory" which remembers all information about what has been calculated.
 - Output of RNN depend on the prior elements within the sequence.
 - Types:
 - 1 1; 1 many; many 1; many many
 - Vanishing gradient issue
 - LSTM
 - Long Short-Term Memory Networks
 - Address vanishing gradient issue

From: https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn

Deep Learning Model – Data Selection

- Traffic Volume & Occupancy
 - Select key intersections in study area
 - Southbound and Northbound volume, southbound and northbound occupancy
 - Average volume & occupancy for all selected intersection by directions
- Summer weekends
- Data
 - Train dataset: Fridays from May to September 2022, except 7/15/2022 (13 days)
 - Test dataset: 7/15/2022
 - 24 hours by 5-min data point

Deep Learning Model – Data Clean Up & Processing

- 1. Data clean up & processing
 - 1) Select Friday data
 - 2) Clean up and process missing & error data
 - 3) Split training set and testing set
 - Calculate average data by selected intersections and directions for training set
 - Cycle pattern change
 - SB: 7 intersections
 - NB: 5 intersections
 - Offset pattern change
 - SB: 5 intersections
 - NB: 5 intersections

Deep Learning Model – Model Training & Testing

- 2. Deep Learning Model Training
 - 4 LSTM layers with output layer
 - "ADAM" optimizer
 - Loss function: mean squared error
 - TensorFlow keras / scikit-learn MinMaxScaler
 - 6 deep learning models
 - Cycle change volume : SB + NB
 - Cycle change occupancy : SB + NB
 - Offset change volume: SB + NB
- 3. Deep Learning Model Testing
 - Use trained model to test 7/15/2022 data
 - Run and test multiple attributes with multiple epochs
- 4. Deep Learning Model Save
 - Pickle format

17

Deep Learning Model – Prediction

Traffic Volume & Occupancy

Signal Controller and API Development

VAP Controller

- VAP Controller: traffic dependent programming
 - Simulate programmable vehicle-actuated signal controls
 - Interpret control logic commands and generate signal control commands
 - Stage- or group-based

				2.0
NU	20114	Name DE 1 @ CAMILO	c	
Type 160		Allive		
Cycle Time				
· First	0 Other	0.1		
O variable	-			
Controller configuration St	onal times be	in-Config. SC Detector II	acced Config. Signal prov	
TO Plane pure more who	configuration		-	
and the second second second				
Count: 11 ConfigName	Velle	Label		1
Count 11 Donlighame 1 Stock9	Velle	Label 1.56/1		Î
Count 11 ConfigName 1 Stickto 2 SICOLO	Valle	1 56 1 2 36 2		Î
Count 11 ConfigName 1 SIGGRP 2 SIGGRP 3 SIGGRP	Valle	Lahel 1 56 1 2 30 2 3 56 3		Î
Count 11 Confighance 1 Second 2 Second 3 Second 4 Second 4 Second	Valle	Lated 1.55 1 2.30 2 3.56 3 4.55 4		
Count 11 Confighance 1 Second 2 Second 3 Second 4 Second 5 Second	Valle	1 56 1 2 36 2 3 56 3 4 55 4 5 56 3		
Count 11 Confightance 1 SECORP 2 SECORP 3 SECORP 4 SECORP 5 SECORP 6 SECORP	Value	Lated 1 55 1 2 30 2 3 55 3 4 55 4 5 56 5 6 56 6		
Count 11 Confightance 1 SECORP 2 SECORP 4 SECORP 4 SECORP 6 SECORP 7 SECORP 7 SECORP	Varlie	Lated 1 55 1 2 30 2 3 55 3 4 55 4 5 56 5 6 56 6 7 55 7		
Count 11 Confighance 1 SECORP 2 SECORP 3 SECORP 4 SECORP 5 SECORP 7 SECORP 8 SECORP 8 SECORP 8 SECORP 8 SECORP	Varle	Lated 1 56 1 2 36 2 3 56 3 4 56 4 5 56 5 6 56 6 7 56 7 8 50 8		
Count 11 Confighance 1 SECORP 2 SECORP 4 SECORP 4 SECORP 5 SECORP 7 SECORP 8 SECORP 8 SECORP 8 SECORP 8 SECORP 8 SECORP 9 SECORP	Varke	Lated 1 56 1 2 36 2 3 56 3 4 56 4 5 56 5 6 56 6 7 56 7 8 50 8 902 56 102		
Count 11 Confightance 1 Sacore 2 Succer 3 Succer 4 Secore 5 Succer 6 Secore 7 Sacore 8 Succer 9 Succer 9 Succer 10 Sacore 10 Sacore	Varle	Lated 1 56 1 2 36 2 3 56 3 4 55 4 5 56 5 7 55 7 8 56 6 7 55 7 8 50 8 WE 56 H2 104 56 100		

Signial Controller						+	×
80.	2014	Name: DE 1 @ CAV	MELOT				
toe VP		Alter					
yele Time							
· fired	0 Offset	0.1					
O variable			Red		ľ	Yellow	
			1				
Controller configuration	on Signal Times To	sale Config. SC Dete	ctor Farco & Cor	efg. Signal priva	14		
Count 11 No	Name	MinGreen	Melfad	s RedAm	ther Anthe		+
Count 11 No	Asine 1 SBL	MinGreen	Mediad	RedAm	Iber Anton	> 50	+
Count 11 No 1 2	Abme 1 SBL 2 ABT	MinGreen	5.0 15.0	2.0 2.0	iber Anton	5.0	+ ×
Count 11 No 1 2 3	Name 1 SBL 2 ABT 3 DR	MinGreen	MnRad 5.0 15.0 5.0	10 RedAm 2.0 2.0	00 00 00	5.0 5.0 5.0 4.0	+ ×
Count 11 No 1 2 3 4	Aame 1 SBL 2 ABT 3 EBL 4 WBT	MinGreen	5.0 15.0 5.0 5.0	8 RedAm 2.0 2.0 2.0 2.0 2.0	00 00 00 00 00 00 00 00 00 00 00 00 00	5.0 5.0 4.0 4.0	+ ×
Count 11 No 1 2 3 4 5	Name 1 SBL 2 ABT 3 EBL 4 WRT 5 ABL	MinGreen	5.0 15.0 5.0 5.0 5.0 5.0	2 RedAm 2.0 2.0 2.0 2.0 1.0	10er Anton 03 03 03 03 03 03	> 5.0 5.0 4.0 4.0 5.0	* ×
Count 11 No 1 2 3 4 5 6	Name 1 SBL 2 ABT 3 EBL 4 WET 5 ABL 6 SBT	MinGreen	5.0 15.0 5.0 5.0 5.0 5.0 5.0 15.0	2 RedAm 2.0 2.0 2.0 2.0 2.0 3.0 3.0	tber 03 03 03 03 03 03 03	> 5.0 5.0 4.0 4.0 5.0 5.0	* ×
Count 11 No 1 2 3 4 5 6 7	Name 1 SBL 2 ABT 3 EBL 4 WBT 5 ABL 6 SBT 7 WBL	MinGreen	5.0 15.0 5.0 5.0 5.0 5.0 5.0 15.0 5.0	2 RedAm 10 20 20 20 10 20 20 20 20	tber 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5.0 5.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	*
Count 11 No 1 2 3 4 5 6 7 0	Name 1 SBL 2 ABT 3 EBL 4 WBT 5 ABL 6 SBT 7 WBL 6 EBT	MinGreen	Minifac 5.0 5.0 5.0 5.0 5.0 5.0 15.0 5.0 5.0 5.0	2 RedAr 20 20 20 20 20 20 20 20 20 20	tber 03 03 03 03 03 03 03 03 03 03 03	53 53 40 40 53 53 40 40 40	*
Count 11 No 1 2 3 4 5 6 7 0 9	Name	MinGreen	Minifac 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	2 RedAr 20 20 20 20 20 20 20 20 20 20	tber 03 03 03 03 03 03 03 03 03 03 03 03 03	53 53 48 48 58 58 58 58 48 48 48 08	* ×
Count 11 No 1 2 3 4 5 6 7 6 7 6 9 10	Name 1 585 2 ABT 3 EBL 4 WBT 5 ABL 6 587 7 WBL 6 CET 102 ASpec1 104 ASpec12	MinGreen	Minifac 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	2 RedAr 20 20 20 20 20 20 20 20 20 20	tber 03 03 03 03 03 03 03 03 03 03 03 03 03 0	530 530 530 430 530 530 530 430 430 630 030	*

- In VISSIM
 - Pre-coded basic signal group settings for all patterns
 - Signal patterns saved in text files
 - **.pua*: signal data file
 - *.vap: program logic

Files of VAP Controller

PUA file:

- SIGNAL_GROUPS: phase groups
- STAGES: signal operational statuses
- STARTING_STAGE: first operational status
- VAP file
 - Signal group concept
 - Define signal patterns and recall modes
 - All patterns have the same phases sequence

Phase split

			mer zez mer der mer zer meptar zupta mer
6	RAY	stage_2	NBT NBL
	MAXGREEN[9,8] = [[25,84,0,5,25,84,0,5],[25,114,0,5,25,114,0,5],[25,144,0,5,25,144,0,5],	red	SBL EBL WBT SBT WBL EBT NSped1 EWped NSp
	[25,144,0,5,25,144,0,5],[25,144,0,5,25,144,0,5],[25,144,0,5,25,144,0,5],	stage_3	NBT SBT
	[25,159,0,5,25,159,0,5],[25,159,0,5,25,159,0,5],[25,159,0,5,25,159,0,5]],	red	SBL EBL WBT NBL WBL EBT NSped1 EWped NSp
	/* maxgreen is basically the max green time of each phase in each pettern */	stage_4	EBL WBL
	MINGAP10[8] = [30,50,0,40,30,50,0,40], /* min gaps are entered in tenths of secs */	red	SBL NBT WBT NBL SBT EBT NSped1 EWped NSp
	MAXRECALL[8] = [0,0,0,0,0,0,0,0],	stage_5	WBT WBL
	MINRECALL[8] = [0,1,0,0,0,1,0,0], /* MAXRECALL and MINRECALL cannot be true at the same time */	red	SBL NBT EBL NBL SBT EBT NSped1 EWped NSp
	PEDPHASE[8] = [0,1,0,1,0,1,0,0], /* indicate if the phase has pedestrian phase */	stage_6	WBT EBT
	PEDRECALL[8] = [0,0,0,0,0,0,0], /* indicate if the ped phase has ped-recall */	red	SBL NBT EBL NBL SBT WBL NSped1 EWped NSp
	OFFSET[9] = [62,68,26,5,137,8,26,5,137], /* This number is the (REC offset - first_phase_split_time) */		
	VEHOETECTOR[8] = [1,0,0,1,1,0,0,1], /* if the movement has detectors. */	\$STARTI	NG_STAGE
	CYCLE[9] = [90,120,150,150,150,165,165,165], /* cycle length of patterns */	\$	
	YellowRed[8] = [6,6,0,6,6,6,0,6], /* yellow time + red time of each phase */	stage_1	
	Conflicts[8,4] = [[2,4,8,8],[1,4,8,8],[0,0,0],[1,2,5,6],[4,6,8,8],[4,5,8,8],[0,0,0,0],[1,2,5,6]],		
	<pre>/* define the conflict phases/movements of current phase/movement */</pre>	\$END	
_			

ed2

ed2

ed2

ed2

ed2

\$SIGNAL GROUPS

6

8

102

104

106

WBT_SBT_WBI_EBT_NSped1_EWped_NSped2

\$ SBL

NBT EBL WBT

NBL SBT

WBL EBT

NSped1

EWped

NSped2

\$STAGES

stage 1 SBL NBL

VISSIM COM Application

- Developed in Python 3.9 script
- Identify signal controller and change its pattern number
- Use VISSIM event-based script
- Text files of inputs:
 - List of intersections and responsive zone

z S S

s

- List of trigger intersections for collecting measurements
- List of pre-coded signal patterns
- (V+O)% threshold for selecting cycle length
- v value threshold and changing matrix for selecting directionality
- Output: VISSIM MOEs

1	zone	V+0	thre	esho:	ld	lower_threshold high_threshold exit_cycle entry_cycle
2	S020	1	3	8	90	120
3	S020	2	10	18	120	150
4	S020	3	30	40	150	165

one	cycle	directio	n pattern_id vap_prg_no
920	90 BAL	111 1	
920	120 BAL	121 2	
920	150 SB	211 3	
920	150 BAL	221 4	def main():
920	150 NB	231 5	time = Vissim.Simulation.Attvalue('SimSec')
920	150 NB S	SLOW 232	if (time > EVAL TIME STEP) and (time % EVAL TIME STEP == 1):
920	165 SB	311 7	for zone in TARGET ZONE:
920	165 NB	331 8	result = get_vo_vol_info(zone)
920	165 BAL	321 9	
			# 2. check vio calculation results with thresholds an
			proposed vap prg. new cycle, new offset level
			- cycle_offset_check(result, zone)
			# 3. get the v+o thresholds and
one	int_i	.d	# get the zone-20 target pattern number
820	2005		try: if current and collope) is accorded upp port
820	2007		switch vap prg zone(zone, proposed vap prg)
820	2010		<pre>cur_offset_level[zone] = new_offset_level</pre>
820	2014		cur_cycles[zone] = new_cycle
820	2816		except:
220	2017		princ(change was program error.)
020	2017		<pre>vo_vol_track(result, zone, time, proposed vap prg)</pre>
020	2026		return

Analysis Results

Simulation Assumption

- Simulation period: 9:00 AM 9:00 PM
- One hour seeding time
- Scenarios
 - **Scheduled**: signal pattern change follows preset timetable.
 - Responsive: signal pattern change corresponds to (V+O)% and v% value of <u>current</u> interval in simulation run.
 - Predictive: signal pattern change corresponds to (V+O) % and v% value of deep learning model predicted values based on simulation output.
- Vehicle volume input: 15-min interval
- Trigger measurements
 - Captured using Data Collection Measurements (DCM)
 - Volume and occupancy rate: 5-min interval
- Output MOEs
 - Arterial throughputs: 15-min interval, aggregated by one hour
 - Corridor travel time: 1-hour interval
 - Intersection operation: 1-hour interval

VISSIM Network

Simulation Results - Friday

- Comparable corridor throughputs
- Dynamic pattern switch improved
 - Intersection operation
 - Corridor travel time

Simulation Results - Friday

- Comparable corridor throughputs
- Dynamic pattern switch improved

Travel Time Comparison - Friday - Southbound

Travel Time Comparison - Friday - Northbound

Simulation Results - Saturday

- Comparable corridor throughputs
- Dynamic pattern switch improved
 - Intersection operation
 - Corridor travel time

Simulation Results - Saturday

- Comparable corridor throughputs
- Dynamic pattern switch improved

Travel Time Comparison - Saturday - Southbound

Travel Time Comparison - Saturday - Northbound

Summary

Conclusions & Next Steps

- Prediction Algorithms have the potential to improve arterial signal operations
- Provides proactive response, especially when demand is surging and uneven
- More testing underway
 - Varying scenarios such as incidents, work zones, special events etc.
 - Different time variant inputs can be trained and tested.
 - Multiple hybrid machine learning algorithms can be trained and tested.
- Limitation
 - Analysis limited by field-measured demand, which is dependent on field signal operation.
 - Pilot deployments planned in the future, they will provide a better assessment of benefits

Questions?

Zelan Jia, PE - Zelan.jia@jacobs.com

Joyce Zhou, PE, PTOE – <u>Joyce.Zhou@jacobs.com</u>

Shankar Natarajan, PE, PTOE - <u>shankar.natarajan@jacobs.com</u>

Challenging today. Reinventing tomorrow.

